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Abstract—Recently, the convolutional neural network (CNN)
based approach for on-satellite ship detection in synthetic aper-
ture radar (SAR) images has received increasing attention, since
it does not rely on predefined imagery features and distributions
that are required in conventional detection methods. To achieve a
high detection accuracy, most of the existing CNN-based methods
leverage complex off-the-shelf CNN models for optical imagery.
Unfortunately, this usually leads to expensive computational cost,
which is hard to process in real time using resource-constrained
devices deployed in the harsh satellite environment.

In this paper, we propose OSCAR-RT, the first end-to-end
algorithm/hardware co-design framework for On-Satellite CNN
based SAR ship detection, which can simultaneously produce
an accurate and hardware-friendly CNN model and an ultra-
efficient FPGA-based hardware accelerator that can be deployed
on satellites. With the real-time on-satellite processing speed
in mind, we start from a state-of-the-art compact CNN model
for optical imagery. To eliminate the sharp decrease in the
detection accuracy for SAR imagery, we analyze the discrepancy
between the SAR domain and optical domain, and propose to
adapt the model by adjusting the output feature size to better
detect relatively smaller objects in SAR imagery. To improve the
detection speed, we propose to develop a fully-pipelined inter-
layer streaming accelerator architecture, where all the layers
of the CNN model can be concurrently processed using on-
chip FPGA resources. To achieve this architecture, we first
propose a hardware-guided, progressive, and structural pruning
strategy, which is guided by our modeled hardware metrics
and applies state-of-the-art coarse-grained and fine-grained filter
pruning, as well as mixed-precision quantization techniques.
Moreover, to improve the reusability and portability of the
hardware accelerator design, we develop a library of highly
optimized CNN components in high-level synthesis, together with
their performance and resource models. Finally, we map the
pruned CNN model onto these hardware library components in
a fully-pipelined inter-layer streaming fashion, by adjusting their
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parallelism factors to balance the execution of each layer and
fit into the resource constraint. Experimental results using the
adapted MobileNetV1, MobileNetV2, and SqueezeNet models on
the widely used SAR ship detection dataset (SSDD) demonstrate
the effectiveness of OSCAR-RT: for the MobileNetV1 model, it
achieves an average precision of 94%, a detection speed of 652
frames per second on the Xilinx VC709 FPGA evaluation board,
while consuming about 5.8W power.

Index Terms—SAR imagery, ship detection, CNN acceleration,
hardware-guided pruning, algorithm/hardware co-design

I. INTRODUCTION

W ITH the continuous development of spaceborne satel-
lites, such as Sentinel-1, TerraSAR-X and Gaofen-3,

synthetic aperture radar (SAR) imagery with advanced active
microwave sensors plays an increasingly pivotal role in marine
reconnaissance and surveillance, due to its distinctive advan-
tages of all-weather, all-day, vast extent and high-resolution
features. As ships are the main ocean carriers, the accurate
detection of them from SAR imagery is of great significance
in the real military and civil applications, such as maritime
traffic control, ship rescue and battlefield awareness [1].

To ensure safety, security and economic benefits, these
SAR imagery based applications usually require aggressive
processing speed while maintaining a high ship detection
accuracy. Recently, on-satellite detection technology, which
directly performs data collection and data analysis on the
fly, has emerged as a promising solution to address this
dilemma. Nonetheless, deploying a real-time end-to-end ship
detection solution for satellites, from high-accuracy detection
algorithm designs to ultra-efficient hardware implementations,
also brings several challenges.

From the algorithm design perspective, conventional ship
detection methods—such as threshold methods [2], statistical
methods [3], and transformation methods [4]—typically ex-
tract a ship region from sea clutter through the pre-estimated
distribution or manually defined features for specific scenar-
ios. For instance, the well-known constant false alarm rate
(CFAR) method [5] calculates the adaptive threshold based
on the hypothesized background statistical distribution under
a given false alarm rate and finds the ship target pixels within
the local reference window through the obtained threshold.
In addition, many improved CFAR versions [6]–[12] are
proposed to accommodate specific complex circumstances,
such as crowded harbors, busy shipping lines, and oil-spilled
oceans. However, the high fitting precision of the background
usually leads to the high computational complexity of the
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assumed model, resulting in complicated parameter estimation.
More importantly, these methods customized for the specific
scene do not provide robust detection accuracy in more general
scenarios.

Recently, benefiting from the accomplishments of deep
learning in optical imagery, the CNN-based detection methods
have drawn wide attention, since they are able to learn
parameters independently and extract features automatically
to adapt to a variety of scenes. However, when these accurate
CNN models are migrated directly from optical imagery to
SAR imagery, they lose their accuracy in ship detection due
to the intrinsic characteristics of the SAR imagery, i.e., SAR
images are presented as grayscale images and ship regions
can be very small and densely clustered. Most prior studies
improve the detection accuracy by supplementing meticulous
feature extraction modules into CNN models [13]–[23]. This
comes at the expense of high computational cost and prohibits
efficient hardware deployment to achieve high detection speed.

From the perspective of hardware implementation and de-
ployment, the harsh on-satellite environment imposes stringent
requirements on the size, weight, power, and reliability of the
equipped devices. Unfortunately, most of the existing CNN-
based methods for ship detection are prototyped on power-
hungry GPU platforms [13], [15], [16], [18]–[22], which
are not suitable for on-satellite deployment. On the other
hand, Field Programmable Gate Array (FPGA) is a better
alternative for on-satellite deployment, thanks to its flexible
customization, low power, high performance, and more im-
portantly, ionizing-radiation tolerance [24]. To meet the high
throughput and low latency requirements of on-satellite SAR
ship detection, one challenge is how to maximize the efficiency
of the FPGA-based accelerator design via appropriate architec-
ture design, resource allocation, and parallelism tuning, while
satisfying the high heterogeneity in layer types and sizes of
CNN models.

Even more challenging, there could often exist a conflict
between the effective algorithm design to achieve high detec-
tion accuracy and the efficient hardware design to achieve high
computing performance. On one hand, as mentioned earlier, a
CNN-based method with high detection accuracy may lead to
high computational complexity and inhibits efficient hardware
implementation. On the other hand, an efficient hardware im-
plementation, e.g., binarized neural networks on FPGAs [25],
[26], may lead to significant detection accuracy drop. In
fact, some optimizations that could improve the software
performance may not improve the hardware performance. For
example, numerous pruning strategies are proposed to reduce
the number of operations (OPs) and parameters with tolerable
accuracy loss [27]–[29]. However, recent studies show that the
reduction of the OPs and parameters does not always lead to
the improvement in hardware performance [30]. In summary,
it remains as a challenge to design an accurate yet hardware-
efficient CNN model for on-satellite SAR ship detection.

To address the aforementioned challenges, in this paper,
we propose a novel algorithm/hardware co-design framework
called OSCAR-RT, which spans from accurate CNN model
design to efficient hardware implementation on a target FPGA
for on-satellite SAR ship detection. In summary, this paper

makes the following contributions:
1. The first end-to-end algorithm/hardware co-design frame-

work for on-satellite SAR ship detection, called OSCAR-
RT, which comprises of SAR-aware CNN model adapting,
hardware-guided progressive pruning, and fully-pipelined
inter-layer streaming accelerator design.

2. A SAR-aware CNN model adapting technique that adapts
a compact CNN model from optical imagery domain—via
adjusting its output feature size—to better detect relatively
smaller objects in SAR imagery. This is based on our anal-
ysis and observation that a CNN’s ability to detect small
objects in SAR imagery is closely and positively correlated
with its output feature size. This simple technique turns out
to be very effective: it improves the SAR ship detection
accuracy from 48.7% (original MobileNetV2 [31]) to more
than 95% (our adapted MobileNetV2).

3. A hardware-guided, progressive, and structural pruning
strategy, which is guided by our modeled hardware metrics
and applies state-of-the-art coarse-grained and fine-grained
filter pruning, as well as mixed-precision quantization tech-
niques. To guide our model pruning, we develop perfor-
mance and resource utilization models for our hardware
accelerator library, and automatically generate a balanced
solution that meets the target latency through flexible trade-
offs between detection accuracy and resource cost.

4. A fully-pipelined inter-layer streaming accelerator archi-
tecture, where we develop a library of highly optimized,
reusable, and portable hardware accelerator components for
common CNN layers in high-level synthesis, and a fast
mapping strategy to map all (heterogeneous and pruned)
CNN layers onto these pre-built hardware components to
run concurrently using on-chip FPGA resources.

5. Experimental results that demonstrate the effectiveness of
OSCAR-RT using three lightweight models including Mo-
bileNetV1 [32], MobileNetV2 [31] and SqueezeNet [33]
on the widely used SAR ship detection dataset (SSDD):
for the adapted MobileNetV1 model, OSCAR-RT achieves
a high average precision of 94%, a high detection speed of
652 frames per second and a low power consumption of
about 5.8W power on the Xilinx VC709 FPGA evaluation
board.
The rest of this paper is organized as follows. Section II

reviews related work, including algorithm designs for CNN-
based SAR ship detection and hardware acceleration for
CNNs on FPGAs. Section III presents our proposed OSCAR-
RT framework in detail. Experimental evaluation is demon-
strated in Section IV. Finally, Section V concludes this paper.

II. RELATED WORK

A. Traditional CFAR-based Ship Detection Methods

Various traditional ship detection methods have been pro-
posed in recent decades [2]–[5], [34]–[37]. Among these
methods, CFAR detector is widely studied and equipped for
satellites [38] because of its target-irrelevant characteristic.
The primary step of standard CFAR is to accurately model the
background clutter using different models such as Gaussian
[37], log-normal [34], generalized Gamma models [35] and
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mixed models [36]. For instance, Leng et al. combined the
spatial distribution based on kernel density estimation on the
original intensity model to reduce the influence of bright but
relatively discrete SAR ambiguity and sea clutter [37].

However, highly heterogeneous clusters and interfering tar-
gets in the complex scenes usually contaminate the well-
designed distribution, resulting in biased parameter estimation
and inaccurate probability density function (pdf). Therefore,
multiple improved CFAR variants—based on optimal statis-
tics, or truncated clutter statistics, or data censoring—have
been proposed [6]–[12]. For instance, [10] and [11] adopted
the adaptive-threshold-based cluster truncation strategies to
remove the high-intensity outliers caused by interfering target
pixels, the azimuth ambiguities, and the breakwater in the
multiple target environment. Ai et al. [12] trimmed both
high-intensity and low-intensity (such as spilled oil) outliers
through the adaptive bilateral threshold and calculated the pdf
of sustained real clutter samples using log-normal distribution.
However, these traditional methods are highly dependent on
real background modeling with complex parameter estimation
for specific scenes. Further, one method cannot show compet-
itive detection performance in different scenes.

B. CNN-based Ship Detection Methods in SAR Imagery

Recently, with the publication of some comprehensive and
standard SAR ship datasets, such as SSDD [13] and HRSID
[14], there is a growing body of literature that demonstrates the
great potential of CNN-based methods in detection accuracy
compared with traditional methods. The mainstream CNN-
based detection methods depend on the prevailing achieve-
ments of CNNs for computer vision with optical images,
which can be mainly grouped into two categories: two-stage
methods [13]–[17] and one-stage methods [18]–[22].

The two-stage methods first utilize the neural network to
generate the Region of Interest (ROI) proposals, and then
the detection results are obtained by reprocessing the two
branches of the classification and regression network. For
instance, on the basis of standard Faster-RCNN [39], Li et
al. [13] employed a variety of optimization strategies such
as feature fusion, transfer learning and hard negative mining
to improve the ship detection performance. Cui et al. [15]
constructed a dense attention pyramid network by embedding
a convolutional block attention module (CBAM) in the original
feature pyramid network (FPN) [40], thereby strengthening the
ability to detect ships in inshore areas. Similarly, Zhao et al.
[16] proposed an improved FPN with the combination of a
novel lateral connection. Although these methods can acquire
high accuracy, their complex and redundant detection schemes
slow down the processing speed, which are hard to be applied
to real-time applications such as maritime disaster relief and
emergency military decisions.

To alleviate this problem, researchers introduced the one-
stage methods that combine classification and detection into
the same network for SAR ship detection. Chang et al. [19]
first proposed a YOLOv2-reduced network by removing some
redundant top layers from the original YOLOv2 [20]. Zhang
et al. [21] proposed a grid CNN structure based on deep

separable convolution inspired by YOLOv2. The efficient net-
work structure proposed by Chen et al. [22] adopted Darknet-
53 to extract shallow location and deep semantic features
and then utilized a top-down pyramid with concatenation to
complete multi-scale detection in complex scenes. However,
even for one-stage methods, their processing speed is still
lagging behind the real-time requirements.

Unfortunately, due to the late start of CNN-based SAR ship
detection, most of the existing solutions are prototyped on the
power-hungry GPU platforms, which are impractical to deploy
in the hash satellite environment. In short, existing algorithm
optimizations did not consider the hardware-friendly charac-
teristics of real satellite applications at the beginning of the
model design. Our work aims to leverage the advantages of the
one-stage methods, and provide high detection accuracy and
hardware efficiency through algorithm/hardware co-design.

C. Hardware Acceleration for CNNs on FPGAs

Compared to GPUs, FPGAs have lower computing latency,
and lower power and energy consumption. While compared to
ASICs, FPGAs have more flexible reconfiguration and faster
development cycle. Moreover, FPGAs are ionizing-radiation
tolerant, which makes FPGAs a great hardware platform
to accelerate on-satellite SAR ship detection. Unfortunately,
existing FPGA-based implementations for SAR ship detection
mainly target the traditional detection methods [38], [41] since
CNN-based SAR ship detection methods are relatively new.

Meanwhile, FPGA has indeed become one of the main-
stream candidate platforms for CNN acceleration. Existing
representative studies on FPGA acceleartion for CNNs can be
divided into two major categories according to their CNN ac-
celerator architecture design: time-multiplexing layer-sharing
architecture [42]–[46] and fully-pipelined inter-layer streaming
architecture [25], [26], [47], [48].

The time-multiplexing layer-sharing architecture imple-
ments a big, unified and shared compute unit for all layers
of the same type, and is shared by all CNN layers through
time-multiplexing, i.e., it executes one CNN layer at a time.
For instance, Zhang et al. [42], [43] used the roofline model
[49] to obtain the optimal parameter configuration for each
layer by balancing computation and communication. The
polyhedral-based framework named PloySA proposed in [44]
can automatically generate the high-performance systolic array
architecture for a standard convolution (SC) layer with a spe-
cific kernel size. Subsequently, they further designed foldable
architecture that includes SC, depth-wise convolution (DWC)
and pooling layer to achieve 2D pose detection for multiple
people in optical images [45]. In [46], HybridDNN introduced
a hybrid convolution engine using the fast Winograd algorithm.
However, it is hard for the time-multiplexing layer-sharing
architecture to adapt to the high heterogeneity of layer types
and sizes in modern CNN models, since all heterogeneous
layers of the same type share the same computing unit.

On the other hand, the fully-pipelined inter-layer stream-
ing architecture maps all the CNN layers onto the on-chip
FPGA resources at the same time and executes all layers
concurrently in a fully-pipelined and streaming fashion. For
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example, in FINN [25], the end-to-end mapping of binarized
neural networks (BNNs) onto FPGAs is implemented through
parametric and configurable building blocks. However, the
extreme binary quantization applied by FINN is not suitable
for tasks that require better accuracies. The second version of
FINN, FINN-R [26], extends the original one with support for
mixed and arbitrary precision. However, the model with higher
than 4-bit precision may not be well implemented due to the
non-general thresholding approach for batch normalization and
non-linear function. DNNbulider proposed by Zhang et al.
[47] can automatically produce a fully-pipelined inter-layer
streaming architecture leveraging highly optimized RTL-based
components. Yet, there is a lack of support for new CNN
modules such as DWC (depth-wise convolution). The cham-
pion work of low power object detection of DAC2020-SDC
[50] adopts a fully-pipelined inter-layer streaming architecture
to deploy a VGG-like model on the Ultra96v2 FPGA board.
However, as will be presented in subsection III-C, we find
that its core unit for SC (standard convolution) is still not
resource-efficient enough due to the mismatch computing rate
of its internal components.

From the performance perspective, the fully-pipelined inter-
layer streaming architecture can achieve lower latency and
higher throughput than the time-multiplexing layer-sharing
architecture via fine-grained per-layer instantiation and con-
current and streaming layer execution. Meanwhile, the fully-
pipelined inter-layer streaming architecture also has a more
stringent requirement on the model size: the CNN model size
needs to be compact enough such that all layers can fit onto
the FPGA on-chip resources.

In this paper, we intentionally start with a widely used
compact CNN model, i.e., MobileNetV1 [32], MobileNetV2
[31] and SqueezeNet [33], and adapt it to the SAR imagery to
improve its detection accuracy to more than 95%. Moreover,
we apply hardware-guided pruning to further reduce the model
size with less than 2.1% accuracy drop, and then implement
a highly optimized fully-pipelined inter-layer streaming archi-
tecture on the FPGA. To the best of our knowledge, we are the
first to propose an end-to-end algorithm/hardware co-design
framework for on-satellite CNN-based SAR ship detection.

III. OUR PROPOSED OSCAR-RT FRAMEWORK

Fig. 1 depicts the overall design flow of OSCAR-RT that
integrates SAR-aware model adapting, hardware-guided pro-
gressive pruning, and fully-pipelined inter-layer streaming
accelerator mapping. It takes the target detection accuracy
(Acctar) and latency (Lattar), as well as the target FPGA
platform with the available resource (Restotal), as inputs.
With the target latency in mind, we employ the widely used
lightweight one-stage CNN models from the optical image
domain as the initial reference model. To obtain a high-
accuracy network structure suitable for SAR image domain,
we carefully analyze the data characteristics of SAR images
and propose to adapt the CNN model by adjusting its output
feature map size to better detect small objects.

To fit the entire (adapted) CNN model onto the FPGA chip,
we propose a hardware-guided progressive pruning strategy

and a fully-pipelined inter-layer streaming accelerator architec-
ture. To eliminate the drawbacks of existing pruning methods
that mainly aim to reduce the number of parameters and
operations [30], we use hardware metrics—including hardware
parallelism and resource cost—to guide our structural pruning
and progressively compress the model to generate a series of
CNN candidates and their corresponding optimized hardware
configurations, while satisfying the target accuracy. In our
pruning strategy, we apply hardware-friendly coarse-grained
and fine-grained filter pruning, as well as mixed-precision
quantization (4-bit weights, and 3-bit to 6-bit activations), to
maintain a less than 2% accuracy loss.

To improve the reusability and portability of our hardware
accelerator design, we develop a library of highly optimized
and configurable CNN components in high-level synthesis
(HLS), as well as their performance and resource models.
Based on this library, we map our pruned CNN model onto
these hardware components in a fully-pipelined inter-layer
streaming fashion, such that all CNN layers can run concur-
rently on the FPGA. During the mapping process, we adjust
each layer’s parallelism factor to balance the execution latency
of all layers and fit all layers onto the on-chip FPGA resources.

The final output of our OSCAR-RT framework is a series
of optimized CNN models (CNNs) and their corresponding
optimized hardware designs (HW Archs). The whole process
is automated. Users can select one of the candidates as their
final choice, based on the trade-off of the detection accuracy,
latency, throughput, and resource utilization. Finally, to quick-
ly verify the on-board performance of our generated model and
hardware architecture, we provide users with a unified and
automated CPU-FPGA heterogeneous testing system, which
can realize the pipeline scheduling among the reading of input
samples on CPU, major CNN computation on FPGA, and post-
processing on CPU, to overlap their execution.

A. SAR-Aware Model Adapting

When a prevalent CNN network for the optical imagery is
migrated to SAR ship detection tasks, it usually cannot achieve
the best accuracy due to the essential difference of microwave
imaging mechanism. For instance, the detection accuracy by
applying the original reference MobileNetV2 model [31] to the
widely used SSDD SAR dataset [13] is very low. As shown
in Fig. 2, the average precision (AP) value obtained by the
original MobileNetV2 model under different input image sizes
ranges from 32.8% to 59%, accompanied by a large number
of missed detections, false alarms and high positioning errors
(will be presented in Fig. 11 and Fig. 12 in Section IV-B).

To understand the reason behind the accuracy degradation,
we analyze the SAR images and find that the ship objects
are much smaller and densely clustered in the grayscale SAR
images. Therefore, we further characterize the relationship
between the SAR ship detection accuracy and the output size
of the feature extractor. As shown in Fig. 2, the output size
of the feature extractor is positively correlated with the ability
to detect small targets: the larger the output feature size, the
higher the detection accuracy, since a larger output feature size
preserves more object info from the image.
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Fig. 1. An overview of our end-to-end algorithm/hardware co-design framework, OSCAR-RT, for on-satellite CNN-based SAR ship detection.
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Fig. 2. The impact of output feature size on the detection accuracy over SSDD dataset. 320×320, 416×416 and 512×512 denote different input image
sizes. The output feature sizes of 10, 13, 16 were used in the original MobileNetV1 and MobileNetV2 for the three input image sizes, respectively. The output
feature sizes of 20, 26, 32 were used in the original SqueezeNet model for the three input image sizes, respectively. The output feature size is changed by
only modifying the stride of the last convolutional operations or removing the max-pooling operations in the original models.

However, most of the networks used for optical images are
initially designed for classification tasks that only require the
deep semantic information hidden in the image. Therefore,
these CNN models usually employ relatively many down-
sampling operations (e.g., convolution layer with stride 2,
max-pooling layer) to obtain small-scale output feature maps.
When these networks are applied to SAR ship detection, the
small-size target information with very few pixels will be
gradually lost with the deepening network structure, resulting
in unsatisfactory detection performance.

Based on this observation, we adapt the CNN model by
setting an appropriate output feature size while maintaining
the structural advantages of the original model. As a result,
we can improve the SAR ship detection accuracy to more than
95.4% for 416×416 input image size. An in-depth evaluation
is provided in Section IV-B. It is worthwhile to mention that
the modification based on an existing lightweight model is
more efficient and cost-effective than starting from scratch.

In addition, ab initio training strategy [51] is applied to
reduce the learning objective bias caused by the pre-trained
weights using optical images such as ImageNet. Finally, the

modified CNN model with pre-trained weights is settled down.
The layer-wise information, including layer type and layer
size, is extracted and passed to the next step.

B. Hardware-Guided Progressive Pruning

Although the one-stage lightweight model (with our model
adaption) is used as our initial reference, it is still impractical
to host the entire CNN model with all parameters in all layers
in resource-constrained FPGAs. Therefore, we propose a pro-
gressive and structural pruning strategy in Algorithm 1, which
is guided by our modeled hardware metrics (in Section III-D)
to iteratively prune the CNN layers that cost the maximum
amount of hardware resources, under the constraints of the
maximum accuracy loss ε, target latency Lattar, and available
resource Restotal. To reduce the execution time of the iterative
pruning, initially, we also apply a coarse-grained filter pruning
to prune all layers globally and conservatively. Finally, we also
apply state-of-the-art mixed-precision quantization [50], [52]
to further reduce the model size. Next we present the coarse-
grained and fine-grained filter pruning and mixed-precision
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quantization aware training steps in Algorithm 1 in detail.

Algorithm 1: Pseudocode of hardware-guided progressive
pruning
Input: CNN with D convolutional (including SC and

DWC) layers; maximum accuracy loss: ε; target latency:
Lattar; available resource: Restotal

Output: A set of CNN candidates: ˆCNN
Tunable Hyper Parameters: Total number of iterations:

iter; global pruning rate: rate; filters to prune in
fine-grained layer-wise pruning: fk; quantization
bit-width for weights and activations: W , A.

1: CNN0 = GlobalFilterPruning(CNN , rate);
2: LongTermTraining(CNN0);
3: MPQAT

(
CNN0, {Wj , Aj}Dj=1

)
;

4: TuneHardwareParallelism(CNN0, Lattar);
// Tune hardware parallelism based on
inter-layer matching (Section III-D)

5: for j from 1 to D do:
6: ResCNN0

Lj
= GetResourceCost(CNN0, j); // Get

resource cost for layer Lj with Eq. (9)
7: for i from 1 to iter do:
8: Lmax = FindMaxResCost

(
Res

CNNi−1

Lj
(j = 1..D)

)
;

9: CNNi = LayerFilterPruning(CNNi−1, Lmax, fk);
10: ShortTermTraining(CNNi);
11: if AccCNN0 −AccCNNi > ε do break;
12: TuneHardwareParallelism(CNNi, Lattar);
13: for j from 1 to D do:
14: ResCNNi

Lj
= GetResourceCost(CNNi, j);

15: if
∑D
j=1Res

CNNi

Lj
≤ Restotal do:

16: CNNi ∈ ˆCNN ;
17: return ˆCNN

1) Coarse-Grained Global Filter Pruning: To expedite the
pruning process, the coarse-grained global filter pruning (lines
1-2 in Algorithm 1) is first performed to simultaneously
remove a certain proportion (rate) of filters from all layers in
the adapted CNN model, while maintaining the accuracy. Ac-
cording to [29], the average rank of the feature map generated
by a single filter almost keeps constant and independent of the
amount of input data, and the feature maps with higher ranks
contribute more to the accuracy. Inspired by this observation,
we first remove the filters corresponding to the feature maps
with relatively lower ranks. To maintain negligible accuracy
drop induced by this global pruning, we apply long-term
training with a relatively large epoch range from 1K to 2K.
In our experiment, the removal of more than 25% of the
parameters in this stage brings less than 0.2% accuracy loss
while the computational complexity reduced by more than
26%.

2) Mixed-Precision Quantization Aware Training: Al-
though the operators represented by float32 can capture more
details during the back propagation of the training process, the
trained parameters are proved to contain a lot of redundant
information in the inference stage [26]. Based on this, we
subsequently apply state-of-the-art low-bit mixed-precision
quantization aware training (MPQAT) [50], [52] to flexibly

reduce the size of both weights and activations (line 3 in
Algorithm 1). In order to reduce the search space while
ensuring efficient hardware implementation, the different bit-
widths (Wj for weights and Aj for activations) is only adopted
for inter-layer, while the intra-layer remains unified precision.
This can be efficiently implemented in our fully-pipelined
inter-layer streaming accelerator design (in Section III-D). Our
experimental results in Section IV show that our quantization
strategy imposes a small impact on accuracy while greatly
reducing the memory consumption and computational cost.

3) Fine-Grained Progressive Filter Pruning: After the
coarse-grained global pruning and mixed-precision quantiza-
tion, we apply the progressive filter pruning with the guidance
of direct hardware metrics to further compress the model
in a more fine-grained layer-wise fashion (lines 4-16), so
as to obtain hardware-efficient CNN candidates suitable for
the target FPGA. In each iteration, we find the layer with
the highest resource cost and remove its last fk filters in
sequence. Subsequently, we fine-tune the updated network
with short-term training (the training epoch ranges from 50
to 200) to restore its accuracy. If the accuracy loss is larger
than ε, we stop the pruning algorithm; otherwise, we update
the hardware parallelism factors and the resource cost of
each layer according to the inter-layer streaming matching in
Section III-D. If the total resource of all layers fits within the
available resource Restotal, then this CNN model, together
with its optimized hardware configuration, will be added to
the candidate CNN set ˆCNN .

It should be noted that the concept of a layer can be
extended to a collection of multiple layers to adapt to the
CNN structure and accelerate the progressive pruning process.
At the end of this algorithm, a sequence of CNN candidates
from each iteration, together with their optimized hardware
architecture configurations, are generated to providing users
with a variety of deployment options through the trade-off
between accuracy, resource cost, and throughput. In particular,
if the target FPGA is replaced, users can directly select or fine-
tune one of the CNN candidates without expensive overhead
to redo the whole pruning process.

C. Portable and Configurable CNN Hardware Library

To improve the useability and portability of OSCAR-RT for
different CNN models and different FPGAs, we build an
HLS-based CNN hardware library, including primitive com-
ponents and layer components with configurable parameters.
To be specific, the primitive components consist of a series
of functional logics such as same padding unit (SamePad),
sliding window unit (SWU), Matrix-Vector-Activation unit for
depth-wise convolution (D-MVAU),Matrix-Vector-Activation
Unit for standard convolution (S-MVAU) and max-pooling
unit(MPU). The layer components, such as SC (standard con-
volution), PWC (point-wise convolution, a special case as 1×1
SC), DWC (depth-wise convolution), the residual unit [53],
and fully-connected layer, can be easily constructed through
the pipeline sequence of those primitive components. Note
that all of our hardware library components use the streaming
interface for efficient processing and easy construction of a
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 1:  for(or = 0; or < OR; or++){

 2:  for(oc = 0; oc < OC; oc++){

 3：  for(ouf = 0; ouf < M/Oup; ouf++){

 4： for(inf = 0; inf < N×K×K/Inp; inf++){

 5：#pragma HLS PIPELINE II=1

 6： bufI[Inp] readInput(Inp,Oup);  

 //read Inp input pixels from IFM processed by SWU 

 7： for(o = 0; o < Oup; o++){

 8：#pragma HLS UNROLL

 9： bufW[Inp] readWeight(Inp,Oup); //read Inp weights 

10： for(i = 0; i < Inp; i++){

11:  #pragma HLS UNROLL

12：  partialSum+=bufI[i]×bufW[i]; 

//pixel-by-pixel multiply-accumate operation

13： }

14：        finalSum[o]+=partialSum;

15:        BufO[o]=ACTU(finalSum[o]); 

16: }}//end of inf loop

17: writeOutput(BufO[Oup]);

18: }}}

Fig. 3. Pseudocode of the baseline S-MVAU with some inefficiency.

TABLE I. Design Variables and Explanations

Variables Explanation
N number of input channels of IFM
M number of output channels of OFM
R/C number of rows and columns of IFM

OR/OC number of rows and columns of OFM
S stride size
K kernel size
P padding size

(W,A) bit-width of weight and activation
(Inp,Oup) parallelism factor along input and output channels

user-defined CNN accelerator. Our proposed hardware library
supports most of the existing CNN models.

Moreover, during the construction of the CNN hardware
library, the latency and resource cost of each component can
be evaluated in advance through pre-modeling without waiting
for the entire CNN model and accelerator to be built. For
the sake of simplicity, we only introduce the core primitive
components of CNN, i.e., S-MVAU and D-MVAU, in detail.

1) S-MVAU Design and Modeling: As shown in Fig. 3, the
standard convolution (SC) takes N input feature maps (IFM)
with size of R × C, and applies standard convolution with
M ×N filters (size of K ×K) to generate M output feature
maps (OFM) with size of OR × OC. In order to increase
the utilization of computation resources in the FPGA, it is
necessary to pipeline and/or unroll the deeply nested multiply-
accumulate loops in the convolution operation along different
dimensions to achieve a high degree of parallelism. Similar
to [43] [54] [50], in this paper, we unroll for the input channel
dimension of IFM and the output channel dimension of OFM,
and pipeline the rest of the loop nests with a pipeline initiation
interval of one (i.e., II=1). We define two parameters, the input
parallelism (Inp) and the output parallelism (Oup), which can
be flexibly configured by users when they use our S-MVAU
component. All the configurable parameters of our hardware
library components are summarized in Table I.

Driven by this unrolling mechanism, [54] and [50] adopted
the baseline hardware structure of S-MVAU shown in Fig. 4(a).
In specific, Inp pixels derived from the streaming IFM, which

Inp

reg

OPU1 

acc reg

OPU2 

OPU3

OPU 

IPU1

A
d

d
 T

re
e

D
o
w

n
S

iz
e
r

ACTU1

FIFO U
p
S

iz
e
r

PE1 

PE2 

PE 



reg

OPU1 

acc reg

OPU2 

OPU3

OPUoup 

IPU1

A
d

d
 T

re
e

ACTU1

Inp Oup

(a)

(b)



Fig. 4. (a) Inefficient baseline hardware structure of S-MVAU [50], [54]. (b)
Our optimized hardware structure of S-MVAU.

is processed by SamePad and SWU units (SamePad and SWU
are not required for 1×1 SC), are first fed simultaneously
into Oup output parallel units (OPU). In each OPU, there is
one input parallel unit (IPU) that performs Inp-way parallel
multiply-accumulates of the input pixels and the corresponding
weights. Considering the working mechanism of S-MVAU, the
weight layout is reorganized offline to reduce the additional
memory access overhead of noncontiguous weight data. To
get the result for each output pixel, the IPU has to execute
N×K×K
Inp times; and each time, the partial sum from the IPU

will be accumulated to get the final sum result. Finally, the
activation unit (ACTU) merges the non-linear activation oper-
ation (e.g., ReLU) with the batch normalization, and applies
to the final sum to obtain the final pixel for the OFM. Our
FPGA implementation of the ACTU is similar to the one used
in [50], which could result in a small tolerable accuracy loss,
since the division operation in batch normalization is replaced
with the right shifter to improve the hardware performance.

One deficiency with this baseline S-MVAU design is that,
the IPU takes N×K×K

Inp cycles to produce a final sum, whereas
the ACTU could consume a final sum every cycle. Such
mismatched data rate makes the ACTU in an idle state for
most of the time. In addition, with the increase of Oup, more
ACTUs also cause unnecessary resource overhead; note that
the ACTU performs batch normalization as well and consumes
notable amount resource. To address this issue, we propose
an optimized S-MVAU hardware structure in Fig. 4(b), which
consists of α identical processing engines (PEs) that work in
parallel. In each PE, we add a DownSizer to perform the
parallel-to-serial conversion to enable β = N×K×K

Inp OPUs
to share one ACTU. Finally, we add an Upsizer to restore
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the serial resulting pixels processed by the ACTU to parallel
pixels. Such optimized structure not only ensures that ACTUs
are always working at full capacity but also reduces the
resource overhead especially for large Oup. The number of
PEs, α, can be calculated as:

α =
Oup

β
=

Oup× Inp
N ×K ×K

(1)

Based on our proposed optimized structure, since the outer
loops in Fig. 3 are pipelined with an II=1, the latency of S-
MVAU is estimated as:

LatS−MVAU =
OR×OC ×M ×N ×K ×K

Inp×Oup× Freq
+

PP

Freq

≈ OR×OC ×M ×N ×K ×K
Inp×Oup× Freq

(2)
where

OR = bR+ 2× P −K
S

+ 1c

OC = bC + 2× P −K
S

+ 1c

PP = pipeline depth− 1

(3)

where Freq is the clock frequency, and Inp < K ×K ×N .
The configurable parameters involved are shown in Table I.

The resource cost is computed as:

ResS−MVAU = α× (β ×ResOPU +ResACTU ) + Γ

= Oup×ResOPU + α×ResACTU + Γ
(4)

where Γ represents the fixed resource overhead caused by the
control logic. ResOPU is the resource cost consumed by the
OPU, which is directly related to Inp, W and A. ResACTU
refers to the resource cost caused by the non-linear activation
function that incorporates the BN operation in the ACTU.
All these Γ, ResOPU , and ResACTU resource cost can be
obtained by the HLS synthesis report.

2) D-MVAU Design and Modeling: Depth-wise convolution
(DWC), which is often followed by 1×1 SC (i.e., point-wise
convolution), plays an important role in modern CNN designs
[55]. Therefore, we supplement the corresponding hardware
structure of DWC to enhance the versatility of our hardware
library. Specifically, DWC applys the filter kernel to each
input channel individually to generate the same number of
output channels (M = N ). Our hardware design of D-MVAU
is depicted in Fig. 5. Inp pixels from the streaming IFM
(processed by SamePad and SWU units) are divided into α
pixel sets (each set contains β = K × K pixels), and these
pixel sets are delivered to α PEs respectively. In each PE,
β parallel units (PUs) execute K × K multiply-accumulates
concurrently to generate β final sums. Subsequently, similar
to S-MVAU, one ACTU is shared by these PUs to obtain the
final pixels of the OFM in order. In particular, Inp and Oup
are always equal for DWC due to its essential computational
properties.
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Fig. 5. Hardware structure of D-MVAU, where M = N and Oup = Inp.

Similar to S-MVAU, the latency of D-MVAU is estimated
as:

LatD−MVAU =
OR×OC ×N ×K ×K

Inp× Freq
+

PP

Freq

≈ OR×OC ×N ×K ×K
Inp× Freq

(5)

where Inp < K ×K ×N .
Its resource cost is computed as:

ResD−MVAU = α× (β ×ResPU +ResACTU ) + Γ

= Inp×ResPU + α×ResACTU + Γ
(6)

where ResPU denotes the resource cost of each PU, which
is related with W and A. The PU occupies a small amount
of LUTs and FFs without using DSPs, as it only uses one
low-bit-width multiplication and addition. Similarly, it can be
obtained via the HLS synthesis report. The number of PEs, α,
can be calculated as:

α =
Oup

β
=

Inp

K ×K
. (7)

D. Fully-Pipelined Inter-Layer Streaming Mapping

With the hardware-guided progressive pruning, we are able
to put all layers of the CNN model on the FPGA chip,
and adopt the fully-pipelined inter-layer streaming accelerator,
as shown in Fig. 1. All parameters can be kept in on-chip
memory to avoid the overhead caused by off-chip memory
access, and all layers are computed concurrently with low-bit
precisions in a pipelined fashion: neighbor layers communicate
data on-chip with FIFOs in a streaming fashion. All these
lead to the improvement of the utilization in computational
resources and the reduction in energy consumption. For each
layer, we customize the hardware library components built
in Section III-C to quickly build the hardware prototype.
The individual layer customization feature not only allows us
to configure the parallelism and bit-width precision flexibly
for each layer, but also has higher adaptability for different
layer types and layer sizes. Next, we present the latency and
resource model for our CNN accelerator, and the parallelism
setting of each layer through inter-layer matching, which is
required in Algorithm 1.
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CNN comp.
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Fig. 6. Illustration of pipeline scheduling between sample reading, CNN computation, and post processing on the unified CPU-FPGA heterogeneous testing
system. Each stage works on a batch of samples.

TABLE II. Detailed Description of SSDD Dataset

sensors polarization Resolution
(m)

size of ships
(num)

size of image
(pixles) images

(num)
ships
(num)small medium large height width

RardarSat-2/TerraSAR-X/Sentinel-1 HH/VV/VH/HV 1-15 1529 936 76 190-526 214-618 1160 2546

1) CNN Accelerator Performance and Resource Modeling:
Based on the proposed fully-pipelined inter-layer streaming
architecture, the analysis model of performance and resource
estimation for the whole CNN can be quickly constructed with
the support of pre-modeled hardware library. Denote the i-
th instantiated layer as Li in a CNN model with D layers.
Assume layer as Li has θi components (e.g., SamePad, SWU,
D-MVAU components), the latency of Li can be computed as:

LatLi
= max{Latσp

|p = 1, ..., θi} (8)

where Latσp
represents the latency of the component p in Li.

For instance, the latency of the DWC layer is the maximum
of three components: Samepad, SWU, and D-MVAU.

The resource cost of Li is the sum of the resource consumed
by all θi components:

ResLi
=

θi∑
p=1

Resσp
(9)

Both Latσp
and Resσp

are pre-modeled in our hardware
library in Section III-C. They are highly related to the input
parallelism Inp and output parallelism Oup, which we will
explore next in Section III-D2.

Therefore, the overall CNN latency and resource cost can
be obtained through the following two equations:

LatCNN = max{LatLi |i = 1, 2, ..., D} (10)

ResCNN =

D∑
i=1

ResLi
(11)

2) Parallelism Tuning based on Inter-Layer Matching: S-
ince almost all computational costs for CNNs are concentrated
in the Matrix-Vector-Activation Unit (S-MVAU or D-MVAU),
the configuration of Inp and Oup in each layer can determine
the latency of the entire CNN accelerator. In this section, we
propose the parallelism settings strategy based on inter-layer
matching to meet the target latency. The guiding principles
can be summarized as the following. First, the slowest layer’s
latency is equal to (or slightly lower than) the target latency.
Second, the Inp of the next layer is always equal to the Oup
of the previous layer, except for the first layer whose Inp is

determined by its number of input channels. That is, as soon as
the new result of the previous layer is generated, the next layer
can be initiated immediately, thereby minimizing the initiation
interval (II) to implement the inter-layer deep pipeline. Third,
we allow some flexibility of the Oup of each layer, which can
be explored among all the submultiples of the number of its
output channels that satisfy the target latency with Eq. (2).
Although some larger Oup values givers lower latency than
the target latency and consumes more resources for the current
layer, it gives subsequent layers more opportunities to adjust
Inp and Oup to use less resources within the target latency.
Finally, according to Eq. (11), the parallelism settings with the
lowest resource cost are selected as the optimal configuration
for the model.

E. Unified and Automated Heterogeneous Testing System

To quickly verify the on-board performance of our generated
hardware accelerator, we construct a unified and automated
CPU-FPGA testing system. It consists of reading input sam-
ples on the CPU (Read), computing the CNN on the FPGA
(CNN comp.) and post-processing of non-CNN portion (post
comp.) on the CPU. After the most time-consuming CNN
computation is accelerated on the FPGA, the overhead of
the remaining two stages becomes non-negligible. Therefore,
we adopt a pipeline scheduling between these three stages,
shown in Fig. 6. Assuming that the total number of input
samples to be tested is total num and batch samples are
processed each time. The optimization strategy is summarized
as follows. First, in the Read stage, num read number of
CPU threads are used to read batch samples. Second, in the
CNN comp. stage, the FPGA accelerator processes the CNN
computations for the batch. Third, in the post comp. stage,
num post number of CPU threads are applied to process the
results produced by the CNN accelerator on the FPGA. While
the CPU reads the next batch of images and completes the
post-processing of the previous batch, the FPGA processes
the CNN computation for the current batch. Therefore, the
FPGA is always working at full capacity. The throughput of
the system can be as close as possible to the throughput of the
FPGA accelerator, through the adjustment of the num read
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Fig. 7. Statistics of SSDD, training set and test set.

and num post parameters.
Finally, we have developed Tcl scripts to instantiate the

HLS-based FPGA accelerator with unified I/O interfaces and
dynamic link library to start the CPU host code programmed
in C language. This enables users to automatically realize
heterogeneous deployment on the CPU and FPGA, while the
underlying knowledge of the platform is not required.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Dataset: We use the SSDD [13] dataset constructed by
Li et al., which has been widely used for SAR ship detection.
It followed the similar procedure of PASCAL VOC to collect
SAR images by the RadarSat-2, TerraSAR-X, and Sentine-1
satellites. As listed out in Table II, it consists of 1,160 different
single single-polarization images with 2,540 multiscale ships,
ranging from 1m to 15m. Each image has an average of
2.03 ships, the smallest ship is about 7×7 pixels, while the
largest is about 211×298 pixels. According to the area of the
bounding boxes, the multiscale ships in SSDD is separated
into 1,529 small ships (below 32 × 32 pixels), 935 medium
ships (from 32 × 32 pixels to 96 × 96 pixels), and 76 large
ships (above 96 × 96 pixels). This dataset focuses more on the
detection capability of the network for the typical small-scale
and medium-scale ships.

For the balance of the offshore and inshore ships, SSDD
is divided into the training set (80%) and test set (20%) by
applying the principles in [22]. Concretely, the images ending
with 1 and 9 in the dataset are treated as test set and the
rest of images are the training set. The statistical results of
ship scales in SSDD, training set and test set are shown in
Fig 7. In our experiments, data augmentation strategies, such
as random cropping, flipping, translating and mirroring, are
utilized to improve the robustness of the CNN training.

2) Reference CNN Models: The reference CNN models we
start with are three lightweight models—MobileNetV1 [32],
MobileNetV2 [31], and SqueezeNet [33]—which have state-
of-the-art performance in object detection or image classifica-
tion for optical images.

The network structures of the three models are shown in
Fig. 8-10. MobilenetV1 adopted a DSC (depthwise separable

Input Operator c n s

4162×1 SC 3×3 32 1 2

2082×32 DSC 64 1 1

2082×64 DSC 128 1 2

1042×128 DSC 128 1 1

1042×128 DSC 256 1 2

522×256 DSC 256 1 1

522×256 DSC 512 1 2(1)

262×512

(522×512)
DSC 512 5(2) 1

262×512

(522×512)
DSC 1024 1 2(1)

132×1024

(522×1024)
DSC 1024 1 1

132×1024

(522×1024)
SC 1×1 25 - -

Fig. 8. The reference CNN model based on MobileNetV1. The highlighted
part in blue and orange represents the details of two changes in the SAR-aware
model adapting. The first column represents the IFM size for each Operator
in the second column. Each row describes a sequence of n repeated identical
layers. c denotes the number of output channels of each operator. The DWC
of each operator has a stride, s.

convolution) composed of a 3×3 DWC (depth-wise convo-
lution) and a 1×1 SC (standard convolution) to replace the
standard 3×3 SC, significantly reducing the parameters and
computations. Based on MobileNetV1, MobilenetV2 proposed
a novel resource-efficient bottleneck block composed of 1×1
SC, 3×3 DWC, and linear 1×1 SC. For SqueezeNet, its well-
designed core block is the Fire block composed of a squeeze
1×1 SC layer, followed by a expand layer including a 1×1
SC and a 3×3 SC. Note that we replace the additional bias
of each convolutional layer with a BN layer, adopt RELU6
for all activation functions, and adjust the kernel size of
the max-pooling layer from 3×3 to 2×2 in the SqueezeNet.
These amendments increase the original SqueezeNet detection
accuracy AP by 1.4% (from 85.2% to 86.6% in Table IV).

Our experiment utilizes the backbone of three models as
feature extractors and employs the YOLOv2 back-end using
five different anchor boxes for ship detection. These anchor
boxes are obtained by applying K-means clustering. The
backbone configuration of the three models is maintained
except that the input images are replaced with SAR images
that appear as grayscale images with small ship objects.

3) Input and Hyper Parameters in Algorithm 1: As shown
in Table III, Algorithm 1 takes our adapted models with
different convolutional layers (D = 21 for MobileNetV1,
D = 28 for MobileNetV2, D = 24 for SqueezeNet) as the
input network. We set the maximum accuracy loss ε = 3%,
target latency Lattar = 3.2ms, Lattar = 1.6ms, or Lattar =
0.7ms, and the available DSP resource Restotal = 3, 600
(DSP is the bottleneck resource in our experiments). Note that
an appropriately large ε can avoid the early termination of the
pruning process caused by the short-term negative accuracy
fluctuation.
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Input Operator t c n s

4162×1 SC 3×3 - 32 1 2

2082×32 bottleneck 1 16 1 1

2082×16 bottleneck 6 24 2 2

1042×24 bottleneck 6 32 3 2

522×32 bottleneck 6 64 4(2) 2(1)

262×64

(522×64)
bottleneck 6 96 3(1) 1

262×96

(522×96)
bottleneck 6 160 3 2(1)

132×160

(522×160)
bottleneck 6 320 1 1

132×320

(522×320)

(522×96)

SC 1×1 - 1280 1 1

132×1280

(522×1280)
SC 1×1 - 25 - -

Fig. 9. The reference CNN model based on MobileNetV2. The highlighted
part in blue and orange represents the details of two changes in the SAR-aware
model adapting. The first column represents the IFM size for each Operator
in the second column. Each row describes a sequence of n repeated identical
layers. c denotes the number of output channels of all layers in the same
sequence. t represents the expansion factor of the output channel compared
with its input channel in the first 1 × 1 SC in each bottleneck block. The
first layer of each sequence has a stride s and others use stride 1. The specific
definitions of t, c, n and s have been described in detail in [31].

For adapted MobileNetV1, we treat the DSC block includ-
ing DWC 3×3 and SC 1×1 (e.g., layer 1-2 in Table V) as one
pruning layer, which preserves the structural advantage of the
existing model and accelerates the search process. Similarly,
the bottleneck block in the adapted MobileNetV2—that is
composed of SC 1×1, DWC 3×3, and linear SC 1×1 layers
(e.g., layer 3-5 in Table VI)—is regarded as one pruning layer.
The Fire block consisting of a squeeze SC layer and a expand
layer (e.g., layer 2-4 in Table VII) is one pruning layer of
adapted SqueezeNet. The AP (average precision) based on
an IoU (Intersection over Union) threshold of 0.5 is used to
quantitatively evaluate the detection accuracy.

Different pruning rates are set for three models in the
coarse-grained global pruning. Considering the structural char-
acteristic, the interpretation of the pruning rate is different for
each model. For MobileNetV1, rate = 1

4/
1
2 means 1

4 of output
filters are removed for the first eight DSC pruning layers and
1
2 of output filters for the last two DSC pruning layers. For
MobileNetV2, rate = 1

4 represents 1
4 of output filters of each

layer (not pruning layer) is pruned except the first two layers
(L=1,2 in Table VI). For Squeezenet, rate = 1

2/
1
4 denotes the

1
2 of output filters in the first convolutional layer is removed,
and 1

4 of the output filters of two convolution layers in the
expand layer of each Fire pruning layer (e.g., layer 6 and
layer 7 in Table VII) are pruned.

In the mixed-precision quantization, 4-bit signed weights
(W ) and 3-bit ∼ 6-bit activations (A) are employed, except
that the input layer of the model uses 8-bit unsigned data and
the output layer use 32 bit signed data.

Input Operator c1 c2 s

4162×1 SC 3×3 - 96 2

2082×96 Maxpool - 96 2

1042×96 Fire 16 64 1

1042×128 Fire 16 64 1

1042×128 Fire 32 128 1

1042×256

(1042×128)
Maxpool -

256

(128)
2

522×256

(522×128)
Fire 32 128 1

522×256 Fire 48 192 1

522×384 Fire 48 192 1

522×384 Fire 64 256 1

522×512 Maxpool - 512 2

262×512

(522×512)
Fire 64 256 1

262×512

(522×512)
SC 1×1 - 25 -

Fig. 10. The reference CNN model based on SqueezeNet. The highlighted
part in blue and orange represents the details of two changes in the SAR-
aware model adapting. The first column represents the IFM size for each
Operator in the second column. c1 denotes the number of output channels of
the squeeze convolution in each Fire Operator. c2 represents the the number
of output channel of the operator–SC 1×1 and Maxpool, or the number of
output channel of two convolutions with different kernel sizes in the expand
layer of each Fire Operator. Each max-pooling has a stride s and a kernel
size of 2.

TABLE III. The Detailed Settings of Input and Hyper Parameters Used in
Algorithm 1. (U) and (S) denote unsigned and signed integer, respectively.

Input or
Hyper Param.

MobilenetV1 MobilenetV2 SqueezeNet

D 21 28 24
Lattar 1.6ms/0.7ms 1.6ms/0.7ms 3.2ms/1.6ms
ε 3%

Restotal 3600
iter 200 100 100
rate 1

4
/ 1
2

1
4

1
2

/ 1
4

A (U)3 detailed in Table V (U)3
W (S)4
fk 8

In the fine-grained progressive pruning, the iteration number
is set as iter = 200 for MobileNetV1, iter = 100 for
MobileNetV2 and SqueezeNet. During each iteration, fk = 8
is used. In MobileNetV1, fk indicates the pruning number of
output filters in the pruning DSC layer. In MobileNetV2, fk
output filters of DWC in the pruning layer are sequentially
pruned without changing the input and output channels of
the pruning bottleneck layer. In SqueezeNet, the fk output
filters of two convolution layer in the expand layer of each
Fire pruning layer is pruned in each iteration.

We use Pytorch [56] to specify all models and training
scripts on the Nvidia RTX 2080Ti GPU. And all training
processes use Adam optimizer with appropriate learning rate
and weight decay.
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(a) (b) (c) (d)

Fig. 11. The small-scale SAR ship detection results for offshore scenes. The first row shows the detection results of the initial MobileNetV2 model (highlighted
by RED) and our modified model (highlighted by GREEN). The second row shows the ground truths, which are highlighted by BLUE.

(a) (b) (c) (d)

Fig. 12. The small-scale SAR ship detection results for inshore scenes. The first row shows the detection results of the initial MobileNetV2 model (highlighted
by RED) and our modified model (highlighted by GREEN). The second row shows the ground truths, which are highlighted by BLUE.

4) Hardware Setup: The proposed hardware architecture
is synthesized and implemented using Xilinx Vitis HLS and
Vivado version 2020.2. We select the Xilinx VC709 evaluation
board that has a Xilinx Virtex7 690T FPGA chip as the target
platform to evaluate our accelerator. The board has 433,200
LUTs, 174,200 LUTRAMs, 866,400 FFs, 1,470 BRAMs and
3,600 DSPs. The host code runs on a 6-core Intel(R) Core(TM)
i5-8400 (@2.80GHz) CPU server. For the comparison to the
GPU, we use a Nvidia RTX 2080Ti GPU and use cuDNN
library to implement the same pruned CNN models.

B. Results for SAR-Aware Model Adapting

Table IV lists the detection accuracy, parameters and model
complexity of each stage in the model adapting. The detection
accuracy of each original model is poor. For instance, the
detection accuracy of the original reference MobileNetV2 is
only 48.7%. Some test results of some typical small-scale
ships in offshore scenes and inshore scenes are visualized in
Fig. 11 and Fig. 12, respectively. We notice that the original
MobileNetV2 has a lot of missed detections and false alarms.

TABLE IV. Performance Results on Detection Accuracy, Model Size and
Computational Complexity at Different Stages. The value within round
brackets in AP column refers to an improvement or loss in AP over the

previous stage. Params refers to the total amount of parameters of
convolutional layers and BN layers in the CNN model. Complexity refers to
the number of multipy-accumulates of convolutional layers and BN layers in

the CNN model.
Model CNN AP(%) Param(MB) Complexity(GOP)

MobilenetV1

reference model 50.7 12.93 1.95(FP32)
modified model1 96.1(+45.4) 12.93 9.04(FP32)
modified model2 96.0(-0.1) 9.7 6.87(FP32)

coarse-grain pruning 96.0(-0) 3.77 2.75(FP32)
mixed-precision quantization 96.1(+0.1) 0.51 2.75(low-bit int)

MobilenetV2

reference model 48.7 8.97 1.03(FP32)
modified model1 95.4(+46.4) 8.97 6.25(FP32)
modified model2 95.1(-0.3) 1.42 1.18(FP32)

coarse-grain pruning 94.9(-0.2) 0.84 0.71(FP32)
mixed-precision quantization 94.7(-0.2) 0.13 0.71(low-bit int)

SqueezeNet

reference model 86.6 2.95 2.17(FP32)
modified model1 96.1(+9.5) 2.95 2.59(FP32)
modified model2 95.8(-0.3) 2.75 2.09(FP32)

coarse-grain pruning 95.7(-0.1) 2.06 1.55(FP32)
mixed-precision quantization 95.5(-0.2) 0.27 1.55(low-bit int)

In addition, there is a certain degree of positioning error for
the correctly detected ships.
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(a) (b) (c) (d)

Fig. 13. The typical SAR ship detection results for complex inshore scenes for our modified model MobileNetV1 (highlighted by GREEN). The second row
shows the ground truths, which are highlighted by BLUE.

As analyzed in Section III-A, this phenomenon is caused
by the essential characteristics of densely clustered small
objects but large detection scenes in SSDD. While the original
network usually loses a lot of small target information due
to the small output feature map. Fortunately, our experiments
found that the output feature size of the feature extractor is
positively correlated with the ability to detect small objects
(Fig. 2 in Section III.A). That is, the larger the output feature
size, the stronger the capability to detect small objects. Intu-
itively, the original SqueezeNet has relatively high detection
accuracy (86.6% of AP) compared with the other two models
because its backbone network has a larger output feature size.
Based on this observation, in modified model 1, with changes
highlighted by BLUE in Fig. 8-10, we modify the output
feature size accordingly using values denoted in Fig. 2. As a
result, its accuracy is improved to more than 95.4% as shown
in Table IV. Such a sharp rise in accuracy is at the expense of
higher computational complexity than the original reference
model. For example, the complexity of the modified model 1
for MobileNetV1 is increased to 4.6 × that of the reference
model.

Compared with the vast and complex ImageNet, SSDD is
featured by a small dataset, a single category, and relatively
few scenes without much feature information. Therefore, mod-
ified model 1 still has a lot of redundant information due to
too deep network. Therefore, we further remove some repeated
blocks, which are highlighted by ORANGE in Fig. 8-10. This
results in only less than 0.3% accuracy loss, shown as modified
model 2 in Table IV, while the parameters and complexity of
MobileNteV2 are reduced by approximately 6.3× and 5.3×.

To visually observe the performance improvement caused
by SAR-aware adapting, we give some typical small-scale ship
detection results of MobileNetV2. As shown in Fig. 11 and
Fig. 12, even in complex scenes with strong speckle noise
(Fig. 11 (b)), ocean background (Fig. 12 (c)), and land clutter
(Fig. 12 (d)), our modified model 2 can detect and locate more
small-scale ships, much better than the original MobileNetV2.

As listed in Table IV, more than 95% of the AP values
for three modified model2 illustrate that our adapted models

TABLE V. Model Structure Obtained by Hardware-Guided Progressive
Pruning for MobileNetV1. The first to sixth columns in the table describe
the layer ID, the number of rows/columns of its IFM, the operation in the

layer, the number of input channels of its IFM after coarse-grained pruning,
two fine-grained pruning strategies respectively with Lattar = 1.6ms and

Lattar = 0.7ms.

L R/C operator N coarse N fine 1 N fine 2
0 416 SC 3×3 1 1 1
1 208 DWC 3×3 32 16 24
2 208 SC 1×1 32 16 24
3 208 DWC 3×3 48 24 8
4 104 SC 1×1 48 24 8
5 104 DWC 3×3 96 64 24
6 104 SC 1×1 96 64 24
7 96 DWC 3×3 96 96 96
8 96 SC 1×1 96 96 96
9 52 DWC 3×3 192 192 112

10 52 SC 1×1 192 192 112
11 52 DWC 3×3 192 96 168
12 52 SC 1×1 192 96 168
13 52 DWC 3×3 384 224 120
14 52 SC 1×1 384 224 120
15 52 DWC 3×3 384 96 120
16 52 SC 1×1 384 96 120
17 52 DWC 3×3 384 256 168
18 52 SC 1×1 384 256 168
19 52 DWC 3×3 512 48 56
20 52 SC 1×1 512 48 56
21 52 SC 1×1 512 512 512
- 52 Bounding Box 25 25 25

obtains good results on most test samples. For instance, Fig.
13 shows more test results of our adapted MobileNetV1 for
different complex sea conditions and positions. It can be
observed that all ship targets are correctly detected except for
a false alarm (Fig. 13 (d)) and slight positioning error (Fig.
13 (b)). These results intuitively prove the strong robustness
of our model in different environments.
C. Results for Hardware-Guided Progressive Pruning

1) Results for Coarse-Grained Pruning: According to the
pruning principle in Section III-B and the detailed pruning
rates in Section IV-A, we performed coarse-grained global
pruning on the three modified network backbones. The number
of remaining input or output channels for each layer after the
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TABLE VI. Model Structure Obtained by Hardware-Guided Progressive
Pruning for MobileNetV2. The first to eighth columns in the table describe
the layer ID, the number of rows/columns of its IFM, the operation in the

layer, the number of input channels of its IFM after coarse-grained pruning,
two fine-grained pruning strategies respectively with Lattar = 1.6ms and
Lattar = 0.7ms, and the number of input activation bits and output
activation bits for each layer. (U) and (S) denote unsigned and signed

integer, respectively.

L R/C Operator N coarse N fine 1 N fine 2 Ai Ao

0 416 SC 3×3 1 1 1 (U)8 (U)3
1 208 DWC 3×3 32 32 32 (U)3 (U)3
2 208 SC 1×1 32 32 32 (U)3 (S)4
3 208 SC 1×1 12 12 12 (S)4 (U)3
4 208 DWC 3×3 72 32 48 (U)3 (U)3
5 104 SC 1×1 72 32 48 (U)3 (S)4
6 104 SC 1×1 18 18 18 (S)4 (U)3
7 104 DWC 3×3 108 60 36 (U)3 (U)3
8 104 SC 1×1 108 60 36 (U)3 (S)4
- Add to input of layer 6
9 104 SC 1×1 18 18 18 (S)5 (U)3

10 104 DWC 3×3 108 84 84 (U)3 (U)3
11 52 SC 1×1 108 84 84 (U)3 (S)4
12 52 SC 1×1 24 24 24 (S)4 (U)3
13 52 DWC 3×3 144 144 144 (U)3 (U)3
14 52 SC 1×1 144 144 144 (U)3 (S)4
- Add to input of layer 12

15 52 SC 1×1 24 24 24 (S)5 (U)3
16 52 DWC 3×3 144 144 144 (U)3 (U)3
17 52 SC 1×1 144 144 144 (U)3 (S)4
- Add to input of layer 15

18 52 SC 1×1 24 24 24 (S)6 (U)3
19 52 DWC 3×3 144 144 144 (U)3 (U)3
20 52 SC 1×1 144 144 144 (U)3 (S)4
21 52 SC 1×1 48 48 48 (S)4 (U)3
22 52 DWC 3×3 288 168 200 (U)3 (U)3
23 52 SC 1×1 288 168 200 (U)3 (S)4
- Add to input of layer 21

24 52 SC 1×1 48 48 48 (S)5 (U)3
25 52 DWC 3×3 288 128 120 (U)3 (U)3
26 52 SC 1×1 288 128 120 (U)3 (S)4
27 52 SC 1×1 72 72 72 (S)4 (U)3
28 52 SC 1×1 960 960 960 (S)3 (S)32
- 52 Bounding Box 25 25 25 - -

coarse-grained global pruning is shown in the fourth column of
Table V-VII. As presented in Table IV, the AP decreases by an
additional of 0%, 0.2% and 0.1%, while parameter/complexity
are reduced by about 61%/60%, 41%/40% and 25%/26%
respectively.

2) Results for Mixed-Precision Quantization: In the mixed-
precision quantization, 4-bit signed weights (W ) and 3-bit
∼ 6-bit activations (A) are employed, except that the input
layer of the model uses unsigned 8-bit data and the output
layer (L=21 in Table V, L=28 in Table VI and L=24 in Table
VII) uses 32-bit. Specifically, all activation bit-width using
RELU6 in MobilenetV1 and SqueezeNet is set to unsigned
3-bit. For MobileNetV2, the detailed number of bits for the
activations in each layer is summarized in the seventh and
eighth column of Table VI. For instance, we set the output
activation bit-width obtained by SC (e.g., L=3, 6, 9 in Table
VI) and DWC (e.g., L=1, 4, 7), as well as following Relu6 unit
to unsigned 3-bit. And we set the output activation obtained
by linear SC (e.g., L=5, 11, 20) to signed 4-bit. In addition,
higher activation bit-widths are applied when the addition

TABLE VII. Structure Obtained by Hardware-Guided Progressive Pruning
for SqueezeNet. The first to sixth columns in the table describe the layer ID,

the number of rows/columns of its OFM, the operation in the layer, the
number of output channels of its OFM after coarse-grained pruning, two
fine-grained pruning strategies respectively with Lattar = 3.2ms and

Lattar = 1.6ms.

L OR/OC operator M coarse M fine 1 M fine 2
0 208 SC 3×3 48 48 48
1 104 Maxpool 48 48 48
2 104 SC 1×1 16 16 16
3 104 SC 1×1 48 48 48
4 104 SC 3×3 48 48 48
- concat[layer3, layer4]
5 104 SC 1×1 16 16 16
6 104 SC 1×1 48 40 24
7 104 SC 3×3 48 40 24
- concat[layer6, layer7]
8 52 Maxpool 96 80 48
9 52 SC 1×1 32 32 32

10 52 SC 1×1 96 96 96
11 52 SC 3×3 96 96 96
- concat[layer10, layer11]

12 52 SC 1×1 48 48 48
13 52 SC 1×1 144 88 24
14 52 SC 3×3 144 88 24
- concat[layer13, layer14]

15 52 SC 1×1 48 48 48
16 52 SC 1×1 144 48 40
17 52 SC 3×3 144 48 40
- concat[layer16, layer17]

18 52 SC 1×1 64 64 64
19 52 SC 1×1 192 80 72
20 52 SC 33 192 80 72
- concat[layer19, layer20]

21 52 SC 1×1 64 64 64
22 52 SC 1×1 192 56 32
23 52 SC 3×3 192 56 32
- concat[layer22, layer23]

24 52 SC 1×1 25 25 25

operation is performed by shortcut. As shown in Table IV,
the mixed-precision quantization incurs an additional less than
0.2% accuracy loss, but further greatly reduces the parameter
size.

3) Results for Fine-Grained Pruning: In the fine-grained
progressive pruning, the maximum accuracy loss ε is set to
3%. Fig. 14 presents the trends of accuracy and resource
cost (number of DSPs) for three models with different target
latency. Intuitively, the reduction of resource cost is at the
expense of decreasing detection accuracy. However, we also
observe the fluctuation of detection accuracy in the short-
term training, which could give a better trade-off between
the accuracy and resource cost. As highlighted in Fig. 14,
for the corresponding target latency settings, we pick out six
candidates (CNN1@1.6 and CNN2@0.7 for MobileNetV1,
CNN3@1.6 and CNN4@0.7 for MobileNetV2, CNN5@3.2
and CNN6@1.6 for SqueezeNet) respectively, with similar de-
tection accuracy, parameter size and complexity. The detailed
network structure after the pruning process is summarized in
the fifth and sixth columns of Table V-VII.

D. Results for Hardware Performance

The final board-level deployment results are listed in Table
VIII. As shown in the third column in Table, it can be observed
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TABLE VIII. Performance Evaluation of Board-Level Deployment within Our Proposed End-to-End Framework OSCAR-RT.

Model
LatTar

(ms)
AP

(%)
Frequency

(MHZ)
Batch GOP

Peak
FPS

GOPS
System

FPS
Resource Utilization

LUT LUTRAM BRAM FF DSP Predict DSP

MobilenetV1
CNN1@1.6 94 250 25 0.57 388 221 385

123173
(28.43%)

5954
(3.42%)

263
(17.89%)

222453
(25.68%)

1009
(28.03%)

954
(26.5%)

CNN2@0.7 94 250 25 0.45 663 298 652
154126

(35.58%)
7199

(4.13%)
313.50

(21.33%)
273634

(31.58%)
2311

(64.19%)
2183

(60.64%)

MobileNetV2
CNN3@1.6 93.3 250 50 0.56 383 214 380

137094
(31.65%)

6177
(3.55%)

247.50
(16.84%)

239613
(27.66%)

1023
(28.42%)

948
(26.33%)

CNN4@0.7 93.3 250 50 0.56 653 366 636
196924

(45.46%)
7906

(4.54%)
319.5

(21.73%)
320828

(37.03%)
2496

(69.33%)
2378

(66.06%)

SqueezeNet
CNN5@3.2 94.6 250 25 0.8 244 195 237

132958
(30.69%)

7567
(4.34%)

311
(21.16%)

239103
(27.60%)

1986
(55.17%)

1897
(52.69%)

CNN6@1.6 92.8 250 25 0.6 391 235 384
160387

(37.02%)
8138

(4.67%)
264.50

(17.99%)
292672

(33.78%)
2736
(76%)

2707
(75.19%)

 ε < 3%

CNN3@1.6

AP:94.3

Res.Cost: 948

0.11MB/0.56GOP

(c)(a)

CNN1@1.6

AP:94.7

Res.Cost: 954

0.11MB/0.57GOP

 ε < 3%

(b)

CNN2@0.7

AP:94.0

Res.Cost: 2183

0.09MB/0.45GOP

 ε < 3%

CNN4@0.7

AP:94.2

Res.Cost: 2378

0.11MB/0.56GOP

 ε < 3%

(d)

 ε < 3%

CNN5@3.2

AP:95.4

Res.Cost: 1897

0.13MB/0.8GOP

(e) (f)

 ε < 3%

CNN5@3.2

AP:94.0

Res.Cost: 2707

0.09MB/0.6GOP

Fig. 14. Accuracy and resource cost of candidate CNNs found in the progressive fine-grained pruning for MobileNetV1 with Lattar=1.6 ms in (a) and
Lattar=0.7 ms in (b), MobileNetV2 with Lattar=1.6 ms in (c) and Lattar=0.7 ms in (d), and SqueezeNet with Lattar=3.2 ms in (e) and Lattar=1.6 ms
in (f). iter=0 refers to the model obtained after coarse-grained pruning and mixed-precision quantization.

that the AP values in the test set bring an additional accuracy
loss compared with their corresponding CNN algorithm ac-
curacy, which is caused by replacing the division operation
with the right shifter in the hardware implementation of the
ACTU unit. The peak FPS (frames per second) measures the
performance of the CNN inference on the FPGA and the
system FPS is obtained including reading the input, computing
the CNN inference and post-processing the detection results,
by using 1K 416×416 SAR images with a batch size of 50
or 25. At a clock frequency of 250MHz, CNN5@3.2 based
on the SqueezeNet achieves the highest AP, reaching 94.6%
with 237 system FPS and 4.4W power, while CNN2@0.7
based on the MobileNetV1 achieves the highest system FPS
at 652 FPS with 94% AP and 5.8W. CNN4@0.7 based on the
MobileNetV2 has the highest GOPS at 366 GOPS with 93.3%
AP and 6.6W. In addition, the DSP usage is the bottleneck of
the hardware implementation and the estimated DSP is very
close to the real DSP utilization, indicating the effectiveness
of our proposed accelerator modeling.

1) Comparison to GPU Implementation: To the best of our
knowledge, the existing CNN based on SAR ship detection
work [18]–[22], [51] only study the GPU solutions with the
detection accuracy as the optimization objective , which is
not suitable for on-satellite processing due to the power and
radiation considerations. Meanwhile, we also compare the
CNN inference latency of our proposed FPGA accelerator
design to that running on a Nvidia RTX 2080Ti GPU using
a batch size of 1. For the GPU implementation, we use the
same pruned MobileNetV1,MobileNetV2, and SqueezeNet as
that used in our FPGA acceleration, and use Nvidia cuDNN
library to implement it. The dynamic power refers to the
difference between running and not running CNN inference on
the FPGA (or GPU). Fig. 15 shows the aggressive advantages
of our FPGA implementation in latency and power con-
sumption compared with GPU implementation. For instance,
compared to the GPU implementation, our FPGA accelerator
in MobileNetV2 achieves 2.4× and 4.2× lower latency, and
consumes 11.6× and 7.9× less power, for CNN3@1.6 and
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Fig. 15. Performance comparisons of different platforms. The dynamic power
in (a) refers to the CNN difference between running and not running CNN
inference on the FPGA or GPU. The runtime is measured by detecting one
416×416 SAR image in (b).

CNN4@0.7 models, respectively. It is worth mentioning that
due to the portable and configurable hardware architecture
design, our implementation is easy to assemble into one
radiation-resistant chip suitable for satellite environment.

V. CONCLUSION AND FUTURE WORK

In this work, we have proposed OSCAR-RT, the first end-
to-end algorithm/hardware co-design framework for highly-
accurate and real-time on-satellite CNN-based SAR ship de-
tection. Inside OSCAR-RT, we have proposed the SAR-aware
CNN model adapting, hardware-guided progressive pruning,
portable and reusable hardware library, and fully-pipelined
inter-layer streaming accelerator mapping on FPGAs. Exper-
imental results using the several widely adopted networks
and SSDD SAR ship detection dataset have demonstrated
that OSCAR-RT can simultaneously produce an accurate and
hardware-friendly CNN model and an ultra-efficient FPGA-
based hardware accelerator. On the Xilinx VC709 FPGA
evaluation board, OSCAR-RT using our adapted MobileNetV1
model achieves an average precision of 94%, a detection speed
of 652 frames per second, while consuming about 5.8W low
power. In addition, compared to the GPU implementation on
a Nvidia RTX 2080Ti GPU, it achieves 2.9× lower latency
and consumes more than 6.8× less dynamic power.

In future work, we plan to adapt our framework to support
more CNN models and more remote sensing applications such
as instance segmentation. Moreover, we plan to fully automate
the co-design process without manual intervention for those
hyper parameters and open source our framework.
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